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ABSTRACT 

As the Defense Acquisition Executive (DAE), the Under Secretary of Defense for 

Acquisitions, Technology and Logistics has full responsibility for supervising the 

performance of the DoD Acquisition System. A challenge to the DAE is in determining 

the most efficient allocation of funding in procuring of over eighty Major Defense 

Acquisition Programs. This thesis develops six different cost functions based on the Unit 

Theory learning curve model for estimating the cost of each of these MDAP systems. 

The most suitable of these adds an annual overhead component to the cost modeled by 

the learning effect.   This function is implemented in an integer-linear optimization 

model, the Procurement Scheduling Optimization Model (PSOM).   PSOM allows the 

planner to specify: an annual budget limit; demand quantities for each system for all 

years in the planning horizon; minimum and maximum annual production rates; earliest 

and latest full rate production (FRP) start periods; and low rate initial production (LRIP) 

costs and quantities. PSOM determines the minimum cost procurement schedule given 

these constraints, finding the optimal quantity of each system to be procured each year of 

the planning horizon. This thesis models the cost of seventeen of the MDAP systems and 

optimally schedules them over an eighteen year planning horizon. PSOM can easily be 

expanded to include all eighty-plus MDAP systems. PSOM is a tool available to 

acquisition planners and decision makers to assist in optimally allocating procurement 

funding. 
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DISCLAIMER 

The reader is cautioned that the computer programs developed in this research 

may not have been exercised for all cases of interest. While every effort has been made, 

within the time available, to ensure that the programs are free of computational and logic 

errors, they cannot be considered validated. Any application of these programs without 

additional verification is at the risk of the planner. 
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EXECUTIVE SUMMARY 

As the Defense Acquisition Executive, the Under Secretary of Defense for 

Acquisitions, Technology and Logistics (AT&L) has full responsibility for supervising 

the performance of the DoD Acquisition System. A phenomenon that the Office of the 

Under Secretary of Defense (AT&L) has recognized is that the total estimated cost of any 

given defense system increases as the rate of procurement for that system decreases.   In a 

world of unlimited resources, all systems could be acquired at the maximum rate possible 

at the lowest possible cost; unfortunately, we live with the reality of a limited annual 

budget. The decision maker's dilemma is in choosing how to "best" schedule the 

acquisition of these systems, subject to budget limitations and other requirements. This 

thesis provides the decision maker with a tool to address this problem. 

The most critical requirement of such a tool is that it accurately reflect the 

estimated cost of the systems that are scheduled with it. This thesis uses Selected 

Acquisition Report (SAR) data for seventeen Major Defense Acquisition Programs to 

develop six different cost estimating relationships and evaluate their suitability for this 

purpose. The "Base Model" is simply an expression of basic learning curve theory: each 

system has a "beginning" price per unit which decreases as more units of the system are 

produced. The five other cost estimating relationships are excursions from this model. 

The "Multiplicative-Rate Model," "IDA Rate-Penalty Model," and "Linearized-Unit- 

Rate-Penalty Model" all include the rate of production as a predictor of unit cost. The 

"Rate-Change Model" assumes that changes in rate of production from one period to the 

next contribute to the cost of each system. The "Base + Overhead Model" adds a fixed 

cost component to the basic learning curve cost for each lot of the system procured. The 

primary measure of effectiveness (MOE) for comparing each cost estimating relationship 

is how well their predicted lot costs agree with the SAR data lot costs.   By this MOE, 

the Base + Overhead Model is the best cost estimating relationship of the six. 

Implementing each cost function in a spreadsheet tool provides additional insight 

into its suitability. The cost functions are used to estimate the annual and total 

procurement costs for the seventeen systems for which we have data. The difference 

between the modeled total cost and the "true" total cost (calculated from SAR data) 

xvii 



serves as a second MOE. By this MOE, the Base + Overhead Model is again superior. 

Although the spreadsheet tool can be used to "manually" adjust the procurement plan for 

each system in search of the least expensive schedule, this is prohibitively tedious. This 

implies the requirement for an optimizing planning tool. 

The Base + Overhead cost function is implemented in an integer-linear program, 

the Procurement Scheduling Optimization Model (PSOM). PSOM is implemented in the 

General Algebraic Modeling System (GAMS), and schedules the quantity of each MDAP 

system to be procured per year over an 18-year planning horizon. PSOM allows the 

planner to specify: an annual budget limit; demand quantities for each system for all 

years in the planning horizon; minimum and maximum annual production rates; earliest 

and latest full rate production (FRP) start periods; and low rate initial production (LRIP) 

costs and quantities. PSOM determines the minimum cost procurement schedule given 

these constraints. Data input to the model requires a working knowledge of GAMS. 

PSOM can be used to construct a chart of the efficiency frontier, a plot of the 

minimum total cost of all systems at varying budget limits. This is built by repeatedly 

solving PSOM in a loop, with the budget decreasing after each iteration, from an amount 

in which the constraint is slack to the point at which the model becomes infeasible. The 

efficiency frontier for the seventeen systems modeled in this thesis is presented below. 

TRADEOFF BETWEEN ANNUAL BUDGET 
AND TOTAL PROCUREMENT COSTS 

$159,000 

$158,500 

$155,500 

$12,000 $14,000 $16,000 $18,000 

Annual Budget (GY00$M) 

$20.000 $22.000 

Efficiency Frontier for Subset of MDAP Systems 
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Procurement schedules corresponding to all points above the line are sub-optimal. 

Schedules corresponding to points below the line are infeasible. The decision maker can 

use the information in many ways. Assuming that the current schedule is sub-optimal, 

the decision maker may choose to optimize the schedule for the current budget and thus 

reduce overall cost; or, given an allowable overall cost, the decision maker may choose to 

reduce the annual budget available. If the schedule is already optimal, the decision maker 

will readily appreciate the effect of changing the annual budget limit; the additional cost 

of a reduction in budget, or the potential long-term savings from an increased budget, are 

equally apparent. 

PSOM can be easily expanded to include all 80+ MDAP systems. Expansion and 

use of PSOM or a similar optimization model is recommended for use by acquisition 

planners. 
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I. INTRODUCTION 

In his keynote address to Advanced Program Managers Course 99-02, Dr. Jacques 

Gansler, Under Secretary of Defense (Acquisition, Technology and Logistics) listed three 

"vital priorities" for the DoD acquisition community over the next few years (Gansler, 

1999): 

• To equip the early 21st century warfighter with the right equipment to assure 

our security and withstand any potential threat. 

• To accelerate, broaden, and institutionalize our acquisition reform efforts in 

order to optimize our limited resources in providing those weapons, 

(emphasis added) 

• To modernize our logistics systems -- so as to cut costs, infrastructure, and 

cycle time in support of our 21st century forces. 

The intent of the second priority—"in order to optimize our limited resources'"— 

provides the basis for this thesis. 

A.        THE CHALLENGE 

A phenomenon that the Office of the Under Secretary of Defense (Acquisition, 

Technology and Logistics) (OUSD(AT&L)) has recognized is that the total estimated cost 

of any given system being procured increases as the rate of procurement for that system 

decreases.   As a limited budget forces fewer of each system to be procured per year, the 

systems must be produced at a lesser rate, over a longer period. Either the rate or length 

of production, then, can be considered a contributor to the total procurement cost of a 

system. If not for the limitation of an annual budget and manufacturing constraints, the 

least costly strategy would be to procure all units of a system in one year—clearly an 

impractical real-world solution. Nonetheless, even considering annual budget limits and 

plant capacities, it is a relatively simple task to determine the optimal procurement 

schedule for a single system. Conceptually, it should also be possible to determine the 

optimal procurement schedule for all systems in combination.   This "master" schedule is 

much more difficult to find, requiring suitable cost functions to be developed for each 

system and modeling their interactions. The 2001 Quadrennial Defense Review (QDR) 

offers an opportunity to take advantage of scheduling efficiencies if they can be 
1 



discovered. Figure (1) illustrates hypothetically how rearranging a procurement schedule 

could reduce overall cost. 
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Figure 1. Example of Optimized Schedule 
The top chart shows the current procurement schedule for eight MDAP systems. A cost function that 
incorporates the effects of learning and production rates was used to model the cost of each system. The 
bottom chart shows the same total quantity of each system, procured over a more efficient schedule.   The 
total cost of all systems in the current schedule is 38,541 CY00$M; the total cost of all systems in the 
optimal schedule is 37,464 CY00$M.   Over a billion dollars is saved. 

During each Quadrennial Defense Review (QDR), the DoD reviews its strategy 

for acquisition of new weapons systems and equipment. Each service and DoD entity 

argues in support of its priority interests. As the Defense Acquisition Executive, 

USD(AT&L) has full responsibility for supervising the performance of the DoD 

Acquisition System. A task of OUSD(AT&L) during the QDR will be to provide an 

economic framework for these decisions.   A minimum cost, optimized procurement 



schedule would be an ideal baseline from which the cost of deviations could be readily 

assessed. Therefore, an OUSD(AT&L) goal is to have developed an optimal Master 

Production Schedule for the DoD Major Defense Acquisition Programs (MDAP) for use 

in the 2001 QDR. This schedule will provide the least costly strategy to purchase MDAP 

systems for the next eighteen years. 

In April 1998, OUSD(AT&L) tasked the Institute for Defense Analysis (IDA) to 

explore the use of optimization technology for long range defense acquisition planning 

(Weber, 1999). IDA was asked to focus on the development of such a Master Production 

Schedule for Acquisition Category (ACAT 1) systems that would meet the following 

requirements: 

• Incorporate the approximately 80 Acquisition Category 1 (ACAT 1) systems 

in development or planned for the future. 

• Cover the 18-year Defense Program Projection (DPP) planning horizon. 

• Serve as an aggregate-level planning tool. The model would be developed at 

the system level, not being concerned with the detailed modeling of systems' 

components and sub-components. 

• Reflect long-term planning issues, avoiding short-term scheduling issues such 

as assembly line balancing, potential strikes, etc. 

• Reflect existing peacetime conditions to the extent reflected by the DPP (not 

concerned with wartime attrition). 

• Use procurement cost functions for systems that reflect as realistically as 

possible the various factors affecting their values. 

Fulfilling the last of these requirements represents one of the most challenging 

aspects of this effort. Since the cost function for each system is required in both the 

objective function and budgetary constraints of an optimization model, the model will be 

sensitive to the correctness of these cost estimating relationships. 

The optimization model will seek to minimize the total cost of all systems over all 

years, subject to constraints. The most conspicuous of these constraints is the annual 

budget. Other constraints include: the requirement to meet the quantity demanded for 

each system by certain years; limitations on minimum and maximum production rates; 

and the desire to maintain production stability by forbidding breaks in production. The 



model will also allow the user to specify startup and shutdown years, and allow the input 

of Low Rate Initial Production (LRIP) allowances. Figure (2) illustrates a typical 

acquisition schedule for a single hypothetical system. 

Procurement Schedule for a Hypothetical System 

40 

35 
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25 

I 20 
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10 

BFull Rate 
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" ÜLow Rate Initial' 
Production 

7 8 9 
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10 12 13 14 15 16 

Figure 2. Hypothetical Procurement Schedule for a System 
A hypothetical acquisition schedule for a system starting full rate production (FRP) during period six. 
Quantities produced during low rate initial production (LRIP) are given as data. There are no production 
breaks once started, and LRIP immediately precedes FRP. 

B. PURPOSE 

This thesis develops the cost functions, spreadsheet scheduling tools, and a 

scalable optimization model, for a subset of the MDAP systems that IDA has been tasked 

with including in their model. The systems in the subset, although not selected at 

random, were selected to represent the whole population of MDAP systems.   The 

following seventeen systems were selected: 

1. Advanced Amphibious Assault Vehicle (AAAV) 

2. Abrams Tank upgrade 

3. Bradley Infantry Fighting Vehicle (BIFV) upgrade 

4. C-l7 Aircraft 

5. CH-47 F Helicopter Upgrade 

6. Crusader Self Propelled Howitzer with Resupply Vehicle 

4 



7. DDG 51 Guided Missile Destroyer 

8. Evolved Expendable Launch Vehicle (EELV) Space Launch Vehicle 

9. F/A-18E/F Aircraft 

10. Joint Standoff Weapon (JSOW) 

11. Minuteman III Intercontinental Ballistic Missile 

12. NAVSTAR Global Positioning Satellite 

13. MV-22 Osprey Tilt-rotor Aircraft 

14. SSN 774 Virginia Class Submarine 

15. Standard Missile 2 

16. T-45 TS Aircraft 

17. Trident II Ballistic Missile 

The following additional objectives are accomplished: 

• Modeling six cost functions, to include comparisons between the models 

regarding their respective strengths and weaknesses. 

• Formulation of a mixed integer program in the GAMS algebraic modeling 

language using the most appropriate cost function, with the capability to be 

easily expanded by IDA or OUSD(AT&L) to optimize all eighty ACAT 1 

systems. 

C.        THESIS ORGANIZATION 

Chapter II presents the six cost functions. The characteristics of each, the 

assumptions underlying them, and the data analysis which determines the respective 

system parameters for each function is given. The use of spreadsheet scheduling tools 

that use the cost functions developed is explored in Chapter III. The optimization model 

assumptions are listed, the formulation is offered, its implementation is described and its 

output is presented in Chapter IV. Chapter V details analysis of the optimization model 

output and conclusions. 
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II. COST FUNCTIONS 

Arguably the most crucial step in creating a procurement scheduling tool is to 

derive a sound cost estimating relationship for each system being modeled. The cost 

function must as accurately as possible fit available data, while its behavior must agree 

with our intuition as to what is "correct." 

A. DATA 

The data required to estimate the cost functions of each system consist of the lot 

quantities and lot costs of each system, from beginning to end of procurement. The data 

for all systems but the Crusader and AAAV was obtained from their respective Selected 

Acquisition Reports (SAR). The SAR data was the most readily available, since IDA 

maintains copies of them. 

A second source of this data is the Procurement Annex of the Future Years 

Defense Program (FYDP), which is a detailed five-year projection of procurements. This 

data mirrors that which is reported in the SARs. Since both the Crusader and AAAV are 

currently still in the RDT&E phase, however, neither their SARs nor the FYDP contained 

their appropriation data. 

A third source of the required data is the DPP, which is less detailed but spans 

eighteen years. The DPP contains the most accurate data available for systems with 

incomplete SAR or FYDP data. Both the Crusader and AAAV data was extracted from 

this source. For each system, the unit cost was recalculated in terms of year 2000 dollars. 

Appendix A shows the data used for each system. 

B. METHODOLOGY 

1.        Cost Function Development 

The principal characteristic of a cost function is that as more units of an item are 

produced, the average unit cost ofthat item decreases. In his book The Cost Analyst's 

Companion, David Lee relates that this phenomenon is called "cost progress" and that the 

cost-quantity relation for a given system in production is known as the "cost-progress 

curve," or "learning curve." 



One of the most commonly used models of cost progress is the unit theory model. 

The form of this model is 

C(Q) = TXQP (1) 

where C(Q) is the cost of the Q^ unit; T\ and ß are constants. The constant T\ is the 

theoretical cost of the first unit produced. The constant ß represents the "cost analyst's 

slope" of the curve, or "slope of the learning curve," defined by 

_ Cost at quantity 2Q 
o =  

Cost at quantity Q 
(2) 

or 

S = 2ß (3) 

The constant ß is assumed to be negative, or the cost or each successive unit would 

increase, rather that decrease.   All of the models developed for use in the scheduling 

tools are derived from the Unit Theory Model. Figure (3) shows a typical learning curve 

for a system with theoretical first unit cost Ti of $10 and a learning curve slope of 80%. 
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Figure 3. Typical Learning Curve and Cumulative Cost Curve for a Hypothetical System. 
First unit cost, Th is $10 and learning curve slope of 80% (0 = -0.322). The unit cost of the Q& unit is 
measured on the left axis, the cumulative cost to the £>* unit on the right axis. 
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2. Fitting the Data 

The parameters of each cost function are estimated by fitting them to the data 

using least-squares techniques. When possible, data are transformed to log-space, and 

parameters are determined by linear regression. Otherwise, the nonlinear solver resident 

in Excel is used to find the best fit. 

For five of the six cost functions developed herein, the dependent variable of the 

function is the cost of the Ö* unit, C(Q). Since the data is given for annual lots, however, 

the dependent variable to be used in place of C(Q) is the average unit cost (AUC), which 

is simply defined as 

_ TOTAL LOT COST (4) 

LOT SIZE 

The independent variable to be used in place of Q is the algebraic lot midpoint (LMP), 

the theoretical unit whose cost is equal to the A UC for that lot on the learning curve. The 

LMP can be approximated using the following rules (AFIT, 1997): 

For the first lot (the lot starting at unit 1): 

If Lot Size < 10, then LMP = Lot Size/2 

If Lot Size > 10, then LMP = Lot Size/3 

For all other lots: 

LMp=F + L+2^L (5) 

4 

where F is the first unit number in a lot, and L is the last unit number in a lot. 

The sixth cost function is fitted directly to the lot cost and lot quantity, so that 

expressing the data in terms of unit cost is unnecessary. 

3. Filtering the Data 

An important issue that must be addressed when considering cost functions that 

include rate of production is the treatment of the first and last production periods. Data 

typically shows a relatively smaller quantity of a system that is produced in the first and 

last periods. One of two interpretations must be assumed: either 1) the rate of production 

is lower in these years; or 2) the first and last lots are not produced over a full year. It is 

more realistic to expect that the second of these assumptions is correct. Therefore, since 

the fractional year is not given in the database, including the first and last production 



periods in the data used for analysis is not usually appropriate for rate-based cost 

functions. For models of this type, we drop the last production period from our data. 

Unless the first production period is obviously a full lot, we drop it from the data also and 

model it as LRIP. 

4.        Measures of Effectiveness 

A traditional measure of effectiveness for a linear or nonlinear model is the 

Coefficient of Determination, R2, defined as 

R2_l        {RESIDUAL SS) 
(CORRECTED TOTAL SS) 

where 

RESIDUAL SS = ]T (y, -fj (7) 

CORRECTED TOTAL SS = ]T (y. - Yt f (8) 

In principle, the R could be negative if the model fits worse than the mean does. We 

calculate all R in unit-space, and adjust them to take into account the complexity of the 

model relative to the complexity of the data as follows 

R2
adJ=R2-^(l-R2) (9) 

n-K 

where n is sample size and K is the number of parameters in the model (Hamilton, 1992). 

Since our interest is in how well the cost functions estimate the systems' lot costs, 

it is the R2adj of the fit of the lot costs that is our principal measure of effectiveness for a 

function. 

C.       BASE MODEL 

1.        Characteristics and Assumptions 

The "Base Model" is simply the Unit Theory model presented in equation (1). As 

previously discussed, this model captures only the effect of learning on system cost. This 

model ignores the production rate. Therefore, whether all units are produced in the first 

period, or production is spread over several periods, the total system cost is the same. 
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2.        Model Fit 

The Base Model is the simplest function to fit. Since equation (1) is easily 

transformed to 

lnC(ß) = lnr,+^lnß (10) 

it is a simple matter to perform a linear regression to obtain the coefficients T\ and ß. 

With these coefficients, the annual costs of each system are readily determined. The 

median i?2
adj of the fit of the annual costs for this model over all systems is 0.75; the 

mean is 0.65. Parameters for each system and respective i?2
adj values are displayed in 

Appendix B. Figure (4) shows the data and fitted values for the BIFV unit and lot costs. 
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Figure 4. Base Modeling of Bradley Infantry Fighting Vehicle. 
The plot on the top shows unit costs, the plot on the bottom shows lot costs. The fitted values of the bottom 
plot correspond to a R2

a<Jj of 0.88. 
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D.        MULTIPLICATIVE RATE MODEL 

1.        Characteristics and Assumptions 

Since the Base Model doesn't reflect an increase in total cost as production is 

extended over time, we extend it to include the rate of production.   Lee describes this as 

the production feature most commonly added, with this form 

C(Q) = TxQ
ßRx (11) 

where R denotes the number of units produced in a production period, and the constant % 

is the rate exponent of the curve. The quantity 2X is the curve's "rate slope." As with ß, 

X is assumed to be negative. This implies that the unit cost of a system decreases as the 

rate at which it is produced increases. We refer to this model as the "Multiplicative Rate 

Model." Figure (5) shows this cost relationship for the Bradley Infantry Fighting 

Vehicle. 

Multiplicative Rate Cost Function 

$6.00 

$0.00 -a 
100 

Rate of Production 

700 900 1100 1300 
Quantity '°uu    1500 

Figure 5. Multiplicative Rate Cost Function 
In the Multiplicative Rate Model, both the quantity produced and the rate of production affect the unit cost. 
The chart shows this relationship for the Bradley Infantry Fighting Vehicle, where Tx = 21.790; ß= -0.136; 
and x= -0.250 
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2. Model Fit 

Fitting the Multiplicative Rate Model is done in a similar manner as with the Base 

Model, in that equation (11) is transformed to 

\nC(Q) = lnT]+ß\nQ + zlnR (12) 

and a linear regression performed to obtain the coefficients T\, ß, and x-   Results of the 

regressions for each of the systems are summarized in Appendix B. Predictably, the 

Multiplicative Rate Model more accurately fits the data, as compared to the Base Model. 

The median i?2
adj for this model over all systems is 0.88; the mean is 0.82. Parameters for 

each system and respective i?2
adj values are displayed in Appendix B. Figure (6) shows 

the data and fitted values for the BIFV unit and lot costs. 
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Figure 6. Multiplicative Rate Modeling of Bradley Infantry Fighting Vehicle 
Bradley Infantry Fighting Vehicle plots of Data and Fitted Values. Estimated costs are determined by 
Multiplicative Rate Model. The plot on the top shows unit costs, the plot on the bottom shows lot costs. 
The fitted values of the bottom plot correspond to a R2

adj of 0.91. 
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E. IDA RATE-PENALTY MODEL 

1. Characteristics and Assumptions 

The Multiplicative Rate Model possesses the important characteristic that as the 

number of years spent in production is extended, the total cost of a system increases. An 

issue for consideration regarding the data, however, is that if the rate of production 

increases through the production periods, rate and quantity can be highly correlated. 

IDA chose not to use this extension to the Base Model due to these perceived statistical 

problems (Balut, 1988). Instead, IDA developed their own cost function, of the form 

■fr-*r C(Q) = TxQ
fi+S- 

R' 
(13) 

where Sis the rate penalty parameter, R* is the theoretically optimal rate of production 

for the system, and R is the actual rate of production for that period. This embellishment 

of the Base Model adds a penalty for production made at other than the optimal rate. 

This is referred to as the "IDA Model." 

A useful feature of this relationship is that it does not assume that a higher 

production rate is necessarily better. This allows for the possibility of modeling the 

impact of paying overtime costs to increase production in a period, for example. Figure 

(7) shows the per unit and per lot penalties for the BIFV. 
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Figure 7. IDA Rate-Penalty Model Unit and Annual Penalties for Different Rates of 
Production for the Bradley Infantry Fighting Vehicle 

The per unit penalty is 5(R*-R)2/R* , where: R*, the theoretically optimal rate of production, is 190.55 per 
year; R is the actual rate of production; and 8, the penalty constant, is 0.021. 
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The per unit rate penalty in the IDA Model grows quadratically as the production 

rate departs from the optimal rate; that is, a deviation from the optimal production rate is 

penalized more if done in a single period than if divided over several periods. The 

predictable impact of this feature is that large deviations will be avoided. The optimal 

production schedule will tend to divide the total quantity of each system required evenly 

over the periods of procurement. 

2.        Model Fit 

The IDA Model is more complicated to fit than either of the previous two 

developed thus far. The Excel solver to fit the function parameters in minimizing the 

sum of the squared differences between the data and the calculated average unit cost per 

period. The equation to calculate the average unit cost per period was derived as follows: 

the simple cost progress curve, equation (1), is integrated to yield the relationship 

between the total cost and cumulative quantity produced 

TiQ) = hK— (14) 

The SAR and DPP data provides the total cost for producing a given lot size. 

Therefore, the above equation is transformed to 

r,((a/+o.5r-(g/,+o.5r) 

where TLC is the total lot cost, Qu is the ending cumulative quantity once the lot is built, 

and QL is the ending cumulative quantity of the previous lot. Adding 0.5 to the beginning 

and ending quantities provides a better approximation to the continuous cost function. 

Dividing equation (14) by R, the size of the lot, yields the average unit cost. To 

this the rate penalty is added as follows 

AUC__T,((e,,^f'-(Q,^r')+si£^L (I6) 
(ß + l)R R 

where R*is the theoretically optimal rate of production for that system, recognizing that 

R is equal to (Qu - QL)-   If i? * is not explicitly available from the manufacturer, it is 

either determined by the solver or set at the maximum production rate, depending on 

what the data suggested was most appropriate. The median R2
adj for this model over all 

systems is 0.87; the mean is 0.77. Parameters for each system and respective R adj values 
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are displayed in Appendix B. Figure (8) shows the data and fitted values for the BIFV 

unit and lot costs. 
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Figure 8. IDA Rate-Penalty Modeling of Bradley Infantry Fighting Vehicle 
The plot on the top shows unit costs, the plot on the bottom shows lot costs. The fitted values of the bottom 
plot correspond to a R2

adj of 0.94. 

F.       LINEARIZED-UNIT-RATE-PENALTY (LURP) MODEL 

1. Characteristics and Assumptions 

An assumption that the per unit penalty should more correctly be modeled as 

linear leads to a variation of the IDA Model of the form 

C(Q)  =  T,Qß  + ö\R*  - R\ (17) 

Under this relationship, the same penalty is incurred for a deviation from the 

optimal production rate whether concentrated in one period or spread over several. 

Figure (9) shows the per unit and per lot penalties for the BIFV. 
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Figure 9. LURP Model Unit and Annual Penalties for Different Rates of Production for 
the Bradley Infantry Fighting Vehicle 

Bradley Infantry Fighting Vehicle penalties per unit and per lot for different rates of production. The per 
unit penalty is 8\R*-R\, where: R*, the theoretically optimal rate of production, is 169.27; R is the actual 
rate of production; and 5, the penalty constant, is 0.008. 

2.        Model Fit 

Fitting this model is accomplished in the same manner as the IDA Model, except 

that the penalty term in equation (16) is replaced with the penalty term in (17). The 

median R2
adj for this model over all systems is 0.84; the mean is 0.78. Parameters for 

each system and respective R2
adj values are displayed in Appendix B. Figures (10) and 

(11) show the data and fitted values for the BIFV unit and lot costs. 
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Figure 10. LURP Modeling of BIFV: Unit Costs 
Bradley Infantry Fighting Vehicle plot of unit Data and Fitted Values. Estimated costs are determined by 
the LURP Model. 
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Figure 11. LURP Modeling of BIFV: Unit Costs 
Bradley Infantry Fighting Vehicle plot of lot Data and Fitted Values. Estimated costs are determined by 
the LURP Model. The fitted values of the plot correspond to a R2

adj of 0.88. 

G.        RATE-CHANGE MODEL 

1. Characteristics and Assumptions 

One can argue that a plant will optimize its production at any rate, given time to 

adapt. Changes in the rate of production between periods, however, prevent this goal 

from being realized. Another Base Model extension that attempts to capture this 

behavior is 

C(Q) = TxQ
ß +ö\AR\ (18) 

where AR is the change in rate from one period to the next. We refer to this model as the 

"Rate-Change Model." 

2. Model Fit 

The parameters for the Rate-Change Model are determined in the same way as 

those of the rate-penalty models, except that the rate penalty term is replaced by the rate 

penalty term in equation (18). Values for 8 are constrained to be greater than or equal to 

0.001 to ensure that a minimum penalty is assessed for changing production rate. For the 

first production period, AR is defined to be zero. The median R2
adj for this cost function 

over all systems is 0.73; the mean is 0.68. Parameters for each system and respective 

R adj values are displayed in Appendix B. Figure (12) shows the data and fitted values 

for the BIFV unit and lot costs. 
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Figure 12. Rate Change Modeling of Bradley Infantry Fighting Vehicle 
Bradley Infantry Fighting Vehicle plots of Data and Fitted Values. Estimated costs are determined by the 
Rate-Change Model. The plot on the top shows unit costs, the plot on the bottom shows lot costs. The 
fitted values of the bottom plot correspond to a R2

adj of 0.79. 

H. BASE + OVERHEAD MODEL 

1. Characteristics and Assumptions 

All of the modifications to the Base Model presented thus far, in some form, 

attempt to capture the effect of production rate. One can argue, however, that the rate 

effect is being confounded with the effect of overhead costs. A low production rate 

extends procurement over more periods, causing overhead costs to be incurred for a 

longer time. The simplest extension of the Base Model uses the learning curve to 

determine the learning portion of each lot cost, and then adds an overhead term to each 
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lot cost proportional to the production period. This cost function estimates lot costs 

directly, then, rather than unit costs. The form of this "Base + Overhead Model" is 

HCjfer-fe,,r)tfl, 
ß + l v   ' 

where TLC is the total lot cost, Qu is the ending cumulative quantity once the lot is built, 

QL is the ending cumulative quantity of the previous lot, Q is the overhead term, and / is 

the fraction of the period in production. Since we cannot consider partial years of 

production, t is always one in our application of the model.   Multiple optimal schedules 

that vary the production rate may be determined with this model, but they will all ensure 

that the system is procured in the shortest time possible. 

2.        Model Fit 

Since the lot costs are fitted directly for this model, continuity corrections are 

added to equation (19), and the function fitted to the data is simply 

TLC-A^r-(Q,^r)+Q (20) 
ß+l v 

The Excel Solver is used as with the rate penalty models to determine the parameters for 

each system. The overhead term, Q, is constrained to be greater than or equal to 1; this 

forces a minimum penalty for producing over an additional period. The median R2
adj for 

this cost function over all systems is 0.90; the mean is 0.86. Parameters for each system 

and respective R2
adj values are displayed in Appendix B. Figure (13) shows the data and 

fitted values for the BIFV unit and lot costs. 
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Figure 13. Base + Overhead Modeling of Bradley Infantry Fighting Vehicle 
BIFV plots of Data and Fitted Values. The fitted values of the plot correspond to a R2

adj of 0.93. 
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I.        INITIAL COMPARISON OF MODELS 

Using the median and mean R2
adj for each cost function, the models are compared. 

Figure (14), a series of box plots for each model, summarizes the models into a useful 

visual tool for determining which is the most suitable. The most recently presented 

model, Base + Overhead, exhibits the highest median R2
adj and also has the least 

variance.  This can be considered the "best-fitting" model, followed, in order, by the 

Multiplicative Rate Model, the LURP Model, the IDA Rate-Penalty Model, the Base 

Model, and the Rate-Change Model.  At this point, both the Rate-Change Model and the 

Base Model can be dropped from consideration for use as scheduling tools. 
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Figure 14. Box Plots of the Systems' R2
adj Values for Each of the Cost Models Explored 

Medians are labeled within the plots, means are labeled below the respective model name. The Base + 
Overhead model can be considered the "best-fitting" overall, as it yields the highest median R2

adj, mean 
R2^ and the lowest variance. 
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III. SPREADSHEET SCHEDULING TOOLS 

A.        INTRODUCTION 

A worthwhile step before implementing a cost function in an optimizing program 

is to exercise it in a spreadsheet. In this manner we can confirm our beliefs as to how the 

function behaves, and perhaps gain further intuition as to how it will work in a math 

program. A strength of spreadsheets is that they can easily model complex relationships 

that are difficult, if not impossible, to implement in an optimization model. Elements of 

interest when employing our cost functions are: 1) how well the function estimates the 

current estimated total cost, given the current procurement schedule; 2) how the schedule 

"behaves" in moving towards optimality; and 3) to what degree the total cost is reduced 

when the schedule is "optimal."   As a baseline, refer to Figure (15), a depiction of 

current projected acquisition costs derived from the data. The plot shows the total yearly 

cost if the seventeen systems are produced on currently anticipated schedules with 

currently anticipated costs. These costs will be called "true" since none of the estimation 

models of Chapter II are involved. 

PROCUREMENT COSTS PER YEAR 

2001 2003 2005 2007 2009 2013        2015 2017 

Figure 15. Cost of Current Procurement Schedule 
Cost of current procurement schedule, by system, over eighteen year planning horizon (taken from data). 
The total cost of all systems will be $158,483 (CY00$M).   The plot provides a baseline from which the 
effect of using the cost functions of interest can be readily observed. 
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As the spreadsheet model does not automatically enforce budget and production 

constraints, the user must ensure that they are observed.    Because future needs are 

unknown, imposing a yearly constraint may not necessarily be wise; nonetheless, budget 

limits are a key feature of our model.   In the following experiments with each cost 

function, annual budget constraints are relaxed while observing the production 

constraints. Bounding annual production rate constraints requires careful judgment by 

the modeler. If these limits are not provided, as in this situation, they must be 

extrapolated from the data available (Appendix A). For each system, the highest 

observed annual quantity procured is used as the maximum production rate.   The 

minimum production rate is chosen much more subjectively; this constraint is essentially 

a control over production stability.   Table (1) lists the maximum and minimum annual 

production rates used in the modeling efforts for each system. 

System 

Rate/ 
Year 

AAAV Abrams Bradley C-17 CH-47F Crusader 

MAX 200 120 235 15 29 240 

MIN 20 20 20 1 8 20 

System 

Rate/ 
Year 

DDG-51 EELV FA-18E/F JSOW Minuteman III NAVSTAR 

MAX 3 14 48 900 80 3 

MIN 1 4 12 100 10 3 

System 

Rate/ 
Year 

Osprey SSN 774 Std Missile 2 T-45TS Trident II 

\ MAX 36 3 190 15 12 

MIN 9 1 60 1 5 

B. 

Table 1. Estimated Maximum and Minimum Annual Production Rates 

MULTIPLICATIVE RATE MODEL 

Using the Multiplicative Rate Model to determine the costs of the current 

procurement schedule yields a total cost of $153,241 (CY00$M). This is an 

underestimate of the true cost by 3.31%. A plot of the procurement costs as determined 

by the model is virtually indistinguishable from the data plot in Figure (14). 

Experimentation confirms the expectation that as the rate of production increases, 

unit costs decrease. The minimum total cost is achieved when each system is produced at 
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maximum rate, until the quantity demanded is satisfied.   Furthermore, it is most 

beneficial to delay any reduction in production as long as possible. Disregarding annual 

budget limits, the optimal procurement schedule simply produces every system at 

maximum rate, except during the last period.   Figure (16) shows the least costly 

procurement schedule as determined using the Multiplicative Rate Model. The total 

estimated cost of this schedule is $146,489(CY00$M), a difference of $6,752(CY00$M) 

from the estimated current cost. Since this schedule did not consider annual budget 

limits, this difference serves as an upper bound on the savings that could be expected. 

PROCUREMENT COSTS PER YEAR 
MULTIPLICATIVE RATE MODEL 

2001 2003 2005 2007 2009 2011   2013 2015 2017 

Figure 16. Cost of Optimal Procurement Schedule as Determined Using the 
Multiplicative Rate Model 

The model schedules production at the maximum rate, until demand has been satisfied. The total cost of all 
systems is estimated to be $146,489 (CY00$M).  This represents a savings of $6,752 (CY00$M) compared 
with the current schedule. 

C.        IDA RATE-PENALTY MODEL 

The IDA Rate-Penalty Model yields a current-schedule total cost of $156,275 

(CY00$M), an underestimate of the true cost by 1.39%. This is a slight improvement 

over the Multiplicative Rate Model. As mentioned earlier, when forced to produce at 

below optimum rate, this model seeks to divide the quantity required equally over the 

time allotted. Table (2) illustrates this property with a simple example. 
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R*= 100 PERIODS 
Total 
Cost 8= 10 1 2 3 4 5 

Current Rate 90 90 90 90 40 

Unit Penalty 10 10 10 10 360 

Lot Penalty 900 900 900 900 14400 18000 

Current Rate 80 80 80 80 80 

Unit Penalty 40 40 40 40 40 

Lot Penalty 3200 3200 3200 3200 3200 16000 

Table 2. IDA Rate-Penalty Model Unit and Annual Rate Penalties 
Unit and lot rate-penalties for a five period hypothetical procurement schedule. The total quantity procured 
is 400. In this situation, the system is limited to producing 90 per period vice its optimum of 100. 
Producing at this maximum for four periods exposes the schedule to a severe penalty in the fifth period. 
The least costly solution divides the penalty evenly over the five periods. 

An adjustment that is used in the spreadsheet implementation of this model is to 

eliminate the rate-penalty term of the cost function for the last period of production. 

Otherwise, as just discussed, the system would never be produced at the optimal rate, 

even when unconstrained by budget or rate limits. By eliminating the penalty for the last 

period, it is tacitly assumed that the system is produced at the optimal rate during a 

fraction of this period. 

The optimal schedule, then, produces each system at its optimal rate, thus 

incurring no rate-penalty. The total cost of such a schedule will be the same as if it had 

been modeled using the Base Model.   The total cost of this schedule is $148,824 

(CY00$M), allowing an upper bound of $7,451 (CY00$M) in savings from the estimated 

cost of the current schedule. The plot of the IDA Rate-Penalty optimal schedule is nearly 

identical to that of the Multiplicative Rate Model shown in Figure (16). 

D. LURP MODEL 

The LURP Model yields a current-schedule total cost of $155,674 (CY00$M). 

This is an underestimate of the true cost by 1.77%. As with the IDA Rate-Penalty Model, 

the penalty term is dropped from the last production period. Unlike the IDA Rate- 

Penalty Model, this model seeks to produce at as close to optimal as possible, for as many 

periods as possible; table (3) illustrates this property. 
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R*= 100 PERIODS Total 
Cost 8=10 1 2 3 4 5 

Current Rate 

Unit Penalty 

Lot Penalty 

90 

100 

9000 

90 

100 

9000 

90 

100 

9000 

90 

100 

9000 

40 

600 

24000 60000 

Current Rate 

Unit Penalty 

Lot Penalty 

80 

200 

16000 

80 

200 

16000 

80 

200 

16000 

80 

200 

16000 

80 

200 

16000 80000 

Table 3. LURP Model Unit and Annual Rate Penalties 
Unit and lot rate-penalties for a five period hypothetical procurement schedule, calculated with the LURP 
Model. The total quantity procured is 400. In this situation, the system is limited to producing 90 per 
period vice its optimum of 100. Unlike the IDA Rate-Penalty Model, this model seeks to produce at as 
close to optimal as possible, for as many periods as possible. Dividing the penally evenly over the five 
periods, the preferred solution for the IDA Rate-Penalty Model, is more costly. 

Producing at the optimal rate for each system and period, without regard to budget 

limits, provides the minimum achievable total cost.   The plot of the LURP optimal 

schedule is also nearly identical to that of the Multiplicative Rate Model shown in Figure 

(16).   The total estimated cost of this schedule is $143,965(CY00$M), a difference of 

$11,709(CY00$M) from the current cost estimated with the same function. Again, since 

this schedule did not consider annual budget limits, this difference serves as an upper 

bound on the savings that could be achieved. 

E.       BASE+OVERHEAD MODEL 

The Base + Overhead Model yields a total cost of $159,683 (CY00$M). This is 

an overestimate of the true cost by only 0.76%, the closest of the four functions modeled 

with spreadsheets.   This is also the simplest of the four functions. The same overhead 

cost is included in the lot cost if any units are procured, regardless of the quantity, 

including the last production period. A tacit assumption is made that the final production 

period incurs the same overhead as a full period. There is no unique optimal solution to 

this scheduling exercise, since any combination of quantities that completes production in 

the shortest amount of time will incur the same cost. 

Figure (17) illustrates one optimal solution determined using this function.   The 

total procurement cost over this schedule is $155,407 (CY00$M). This is only $4,276 

(CY00$M) less than the estimated cost of the current schedule. 
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PROCUREMENT COSTS PER YEAR 
BASE + OVERHEAD MODEL 

Figure 17. Cost of Optimal Procurement Schedule, Determined with the Base + Overhead 
Model 

The same overhead cost is included in the lot cost if any units are procured, regardless of the quantity, 
including the last production period. There is no unique optimal solution to this scheduling exercise, since 
any combination of quantities that completes production in the shortest amount of time will incur the same 
cost. The total cost of all systems is estimated to be $ 155,407 (CY00$M).   This represents a savings of 
$4,276 (CY00$M) compared with the current schedule. 

F.        FURTHER COMPARISON OF MODELS 

Of the four functions implemented in spreadsheet applications, only the Base + 

Overhead Model overestimated the total cost of the current procurement schedule. The 

0.76% error of this function's estimate is the smallest of the group in absolute value. 

Additionally, the potential savings from optimal scheduling is the lowest. It is reasonable 

to argue that the Base + Overhead Model is the most conservative of the four. Table (3) 

summarizes the statistics of interest for each of these models. 

Model Multiplicative 
Rate 

IDA Rate 
Penalty LURP Base + 

Overhead 
Median R^adj .88 .87 .84 .90 

Mean R^adj .82 .77 .78 .86 

Cur. Sched Est Cost 153,241 156,275 155,674 159,683 

| Error[ 3.31% 1.39% 1.77% .76% 

Table 3. Summary of Measures of Effectiveness of the Four Best Cost Models 
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G.       "OPTIMAL" SPREADSHEET SOLUTION 

The most accurate spreadsheet tool is selected based on the Base + Overhead cost 

function, for schedule planning.   Using this tool, one can attempt to determine the 

optimal procurement schedule subject to any annual budget constraint. An estimated 

budget amount that will serve as a basis for later comparison, derived simply by 

estimating the largest annual cost from Figure (15), is $16,000 (CY00$M).   Figure (18) 

shows the least costly schedule that the author was able to derive after several hours of 

experimentation and manipulation. The total cost of all systems on this schedule is 

estimated to be $159,159 (CY00$M), only $524 (CY00$M) less costly than the current 

schedule. Although the spreadsheet planner is useful for visualizing procurement costs, 

using it to find an optimal schedule is impractical and tedious. 

PROCUREMENT COSTS PER YEAR 
BEST SCHEDULE AT < $16,000 

$20,000 

$18,000 

$16,000 

$14,000 

$12,000 

>■ o 
$10,000 

C-17 

■ SSN774 

■ FA-18E/F 

■ DDG-51 

■ '_ ' D Crusader 

■ AAAV 

■ Osprey 

\-                     ^^^^^H 

EELV 

Bradley 

■ Trident I] 

■ Abrams 

■ NAVSTAR 

Minuteman 

■ T-45TS 

■ CH-47F 

1aa^^HI__-                          ^^^B ■ JSOW 

■ Std Missile 2 ^^ßüfijßjjajjjjgi~.--y, -„■ . 
2001 2003 2005 2007 2009 2011 2013 2015 2017 

Figure 18. Schedule "Optimized" using Spreadsheet Planning Tool 
The least costly schedule that the author was able to derive after several hours of experimentation and 
manipulation. The unconstrained optimal solution is used as a starting point, and lot quantities of various 
systems are changed until annual budget constraints are met. The total cost of all systems on this schedule 
is $159,159 (CY00$M), which is only $524 (CY00$M) less costly than the current schedule. 

29 



THIS PAGE INTENTIONALLY LEFT BLANK 

30 



IV. OPTIMIZATION TOOL 

The time required in manipulating the spreadsheet tool, coupled with the lack of 

improvement over the current schedule, reinforce the belief that a truly optimizing 

planning tool is required. All of the cost functions developed herein are inherently 

nonlinear, however, a hindrance to optimization modeling. Fortunately, in addition to 

being the best fitting of the cost functions explored, the Base + Overhead cost function is 

the simplest to approximate linearly. This cost function is implemented in an optimization 

model, henceforth called the Procurement Scheduling Optimization Model (PSOM). 

A.       LINEARIZING THE COST FUNCTION 

The nonlinear portion of the Base + Overhead cost function, equation (19), is the 

learning effect term, which is linearized using a step function. This is accomplished for 

each system, using the following steps: 1) the cost of each unit is determined using the 

Base Model; 2) the mean cost of the units yet to be procured is determined; 3) this set of 

units is divided into two subsets: the first consisting of all units of above average cost; the 

second consisting of units of below average cost; 4) both of these subsets are further 

divided into two groups in the same manner, yielding a total of four groups; and, lastly, 

5) the mean unit cost of each group is assigned as the price for every element in that 

group. This method of dividing the set of items to be acquired attempts to weigh the size 

of each group appropriately, contributing to a good deal less error than the standard 

technique of dividing them into groups of equal number. Although somewhat more of a 

demanding procedure, the task is easily accomplished in a spreadsheet. Figure (19) 

illustrates the process described above. Figure (20) shows the cumulative cost curve of a 

system priced using the Base Model versus the same system using a step function 

approximation. Implementing the step function approximation into a spreadsheet 

computes a cost of $160,546 for the current procurement schedule. This is a represents a 

slight increase in error, which is to be expected, an overestimate of the true cost by 

1.30%. 
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Figure 19. Linearization of the Learning Curve Using a Step Function 
The average unit cost of the systems yet to be procured is determined. The set of units to be procured is 
divided into two subsets: the first with units of above average cost, the second with units below average 
cost.   These subsets are further divided in the same manner as the original set, yielding a total of four 
groups. The average unit cost of each group is assigned to every item in that group. 
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Figure 20. Cumulative Cost of a System: Base Model vs. Step Function 
Comparison of cumulative system cost as determined by the Base Model and its step function approximation. 
The system shown has a T, of 20 and learning curve slope, exaggerated for clarity, of 71% ( ß = -0.5). 
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B.       MODEL FORMULATION 

1.        Introduction 

PSOM is an integer-linear program that recommends the quantity of each MDAP 

system to be procured in each year of the DPP.    PSOM carries the same assumptions as 

the Base + Overhead cost which it employs; the most significant of these is that periods 

are measured in years, with partial periods of production not allowed.  Thus, the 

overhead incurred when a system is in production is the same for each year. 

The model uses both binary and continuous variables to achieve a balance of 

realism and solvability.   Binary variables are used to indicate the start periods and 

periods of full rate production (FRP) for each system. Additional binary variables are 

used to control the step function approximation of the cost function.  Although 

procurement quantities must be integers in reality, they are represented by continuous 

variables to expedite solution. 

Formulation 

Indices 

i system 

t,t' time period {1...N} 

P LPJP period {1...M,} 

c cost level {1—4} 

Data 

N 

M, 

QLRIPip 

CLRIPip 

PRICEic 

OVERHEADi 

MINBUYic 

BUDGET, 

number of periods under consideration in this model 

number of LRIP periods for system i 

number of units i in LRIP period/? 

procurement cost of system /' in LRIP period p 

unit cost of system i at cost level c 

fixed cost incurred by system / if in FRP 

quantity of system i that must procured at cost level c before they 
may be procured at cost level c + 1 

annual budget constraint 
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DEMANDi, required minimum quantities of system / by period t 

INVi starting inventory of system / in period 1 

MINRATEj minimum sustaining production rate for system i during FRP 

MAXRATEj maximum production rate for system /' during FRP 

EARLYt earliest period in which FRP may begin for system i (> M\) 

LATEt latest period in which FRP may begin for system / ( < N) 

Variables 

au 

startu 

frpit 

ync 

cumq,, 

costit 

units of system / procured in period / 

{1 if system / begins FRP in period t, else 0 

{1 if system / is in FRP in period t, else 0 

{1 if system i is available at price level c in period /, else 0 

cumulative units of system /' procured by period t 

cost of all units of system / procured in period t 

Formulation 

MINIMIZE:       XZC05/« 

SUBJECT TO: 

Budget 

cost, =^qilcPRICEk +frpilOVERHEADi 
c 

Mi ( \ 

I    p-l 

(Cl) 

BUDGET ^cost,    Vt (C2) 

Demand 

('=1    c 

cumq, = INVi+YYjqil,c + Jj.QLRIPip [starti(1+r+Mrp))   Vi,t 

cumq, > DEMAND,    Vi,t 

34 
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(C4) 



Production Rates 

J^qilc>frpilMINRATEi    Vi,t (C5) 
c 

Yqil^frpilMAXRATEi   \fi,t (C6) 
c 

FRP Start 

YJt{start,)>EARLYi    Vz (C7) 

YJt{startil)<LATEi    Vz (C8) 

TVo Production Breaks 

YjStart^l   Vz (C9) 

F&P Start/Production Status Integrity 

start^ifrp.-frp,.,)   VzY (CIO) 

Step Function Approximation and Buy Limit per Cost Level 

yinMINBUYn<Yjqin<MINBUYn ViY (Cll) 

yil2MINBUYn<Yjqil2<MINBUYi2yi,  Vit (C12) 

yil3MINBUYi3<^qiri<MINBUYnyil2 Vif (C13) 

yil4MINBUYi4 <£qilA <MINBUYi4yil3 V/Y (C14) 

#,,c, CW/W^,, COtf,, >0     \/i,t (C15) 

M.^.^6M w (C16) 
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3. Explanation of Constraints 

Constraints (Cl) define the cost of all units of system i procured in period t, costit. 

The most complicated term in these constraints is the "LRIP term" 

which is the LRIP costs in time period / due to LRIP for system /. A hypothetical system 

with three LRIP periods, a first LRIP period cost of X, and FRP beginning in period six 

provides an example (we omit the i subscript for brevity): 

M=3;   CLRIP,=X;   start6=\ 

we see that in time period t = 3, the LRIP cost is 

CLRIP, {start(l+l+Mrp))= X^tart^^ X(start 6) = X * 1 = X 

as is required. Similar results are obtained for LRIP periods 2 and 3 during time periods 

4 and 5 respectively. 

Constraints (C2) ensure that costs per year never exceed the annual budget. 

Constraints (C3) define the cumulative quantity of each system procured by period t, and 

Constraints (C4) ensure that this quantity meets demand. Constraints (C5) and (C6) 

ensure that annual rates of production are maintained between their respective upper and 

lower limits. Constraints (C7) and (C8) imposed a window of allowable periods in 

which FRP may begin C^t [startit) is simply the FRP start period for system i.) 

Constraints (C9) make certain that there are no breaks in production. Constraints (CIO) 

maintain consistency between the indicator variables for start,, andfrpit.   Constraints 

(Cl 1) through (C14) enforce the step function approximation to the learning curve. The 

binary variables ylc ensure that all of the more expensive units are procured in the 

required quantity before allowing the next less expensive units to be procured. This is the 

same "toggling" technique used by Loerch (1997). 

C.        IMPLEMENTATION AND ANALYSIS 

1. Implementation 

PSOM is implemented in the General Algebraic Modeling System (GAMS) 

[Brooke et al. 1997] with the CPLEX solver, Version 6.5 [ILOG 1999]. Over an 18-year 

planning horizon seventeen MDAP systems are scheduled, at four cost levels. The model 
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has approximately 11,000 equations and 3,500 variables, of which 1,600 are binary. 

Appendix C is the GAMS implementation of PSOM. 

PSOM is a mixed-integer linear program, and is solved by branch-and-bound 

enumeration. The time required to solve each run of the model is influenced by the 

relative integer termination tolerance; this is the difference between the best integer 

solution and the best known lower bound, divided by the absolute value of the best 

integer solution. With a relative tolerance of 0.001, PSOM generally runs in less than 

seven minutes on a personal computer equipped with a Pentium II 333MHZ processor 

and 296MB of RAM. With a relative tolerance of 0.0005, the mean time to solve is 

increased to 15 minutes. While a relative tolerance of one tenth of one percent certainly 

represents a higher fidelity and resolution than the underlying input data, we used a 

0.0005 relative tolerance to more accurately compare model results at varying budget 

levels. 

2. Computational Results 

Since the seventeen systems modeled by PSOM are only a subset of the eighty- 

plus systems that comprise the MDAP population, there is no accurate budget amount to 

input to the model. We use the annual budget amount of $16,000 (CY00$M) derived 

earlier and used in our spreadsheet "optimization." At this budget level, PSOM 

determines the optimal schedule depicted in Figure (21).   PSOM minimizes cost by 

eliminating as much overhead as possible. Total cost of this schedule, as determined by 

GAMS, is $156,297 (CY00$M); this is 0.26% more than the spreadsheet-calculated cost 

of the same schedule, which we attribute to rounding and linearization error. Comparing 

the cost of the current to the optimal schedule, a potential savings of $3,792 (CY00$M) is 

revealed. Additionally, we notice that this is $3,268 (CY00$M) less than the least costly 

spreadsheet-determined schedule. 
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PROCUREMENT COSTS PER YEAR 
OPTIMAL SCHEDULE AT < $16,000 

520,000 

2001 2003 2005 2007 2009 2011 2013 2015 2017 

Figure 21. Optimal Schedule at Current Budget Level 
The optimized procurement schedule at the current estimated annual budget limit. The optimized schedule 
represents a potential savings of $3,792 (CY00$M) over the current schedule. 

PSOM can be used to construct a chart of the efficiency frontier, a plot of the 

minimum total cost of all systems at varying budget limits. This is built by repeatedly 

solving PSOM in a loop, with the budget decreasing after each iteration, from an amount 

in which the constraint is slack to the point at which the model becomes infeasible. A 

simple modification to PSOM, in which the budget is rninimized vice the total cost of all 

systems, reveals the absolute minimum annual budget to be $12,714 (CY00$M).   Figure 

(22) is the efficiency frontier for this procurement schedule.    Procurement schedules 

corresponding to all points above the line are sub-optimal.   Schedules corresponding to 

points below the line are infeasible. The decision maker can use the information in many 

ways. Assuming that the current schedule is sub-optimal, the decision maker may choose 

to optimize the schedule for the current budget and thus reduce overall cost; or, given an 

allowable overall cost, the decision maker may choose to reduce the annual budget 

available. If the schedule is already optimal, the decision maker will readily appreciate 
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additional cost of a reduction in budget, or the potential long-term savings from an 

increased budget, are equally apparent. 

TRADEOFF BETWEEN ANNUAL BUDGET 
AND TOTAL PROCUREMENT COSTS 

$159,000 

$158,500 
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$156,000 
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Figure 22. Efficiency Frontier for MDAP Procurement Schedule 
Procurement schedules corresponding to all points above the line are sub-optimal.   Schedules corresponding 
to points below the line are infeasible. Assuming that the current schedule is sub-optimal, the decision maker 
may choose to optimize the schedule for the current budget and thus reduce overall cost; or, given an 
allowable overall cost, the decision maker may choose to reduce the annual budget available. If the schedule 
is already optimal, the decision maker will readily appreciate the affect of changing the annual budget limit; 
the additional cost of a reduction in budget, or the potential long-term savings from an increased budget, are 
equally apparent. 
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V. CONCLUSION 

Of the six cost functions derived from the Unit Theory Model (equation 1), the 

Base + Overhead Model is most suited to this purpose; it shows the best fit to the data, 

most accurate estimate of current total cost, and is the simplest to implement in an integer 

linear program. PSOM uses this relationship to determine the annual procurement costs 

of the MDAP systems that it schedules. 

PSOM allows the analyst to specify: an annual budget limit; demand quantities 

for each system for all years in the planning horizon; minimum and maximum annual 

production rates; earliest and latest FRP start periods; and LRIP costs and quantities. 

PSOM determines the minimum cost procurement schedule given these constraints. Data 

input to the model requires a working knowledge of GAMS. 

Perhaps the most illuminating product that PSOM can determine is the efficiency 

frontier for the schedule cost versus the annual budget limit. This allows a decision 

maker to visualize the tradeoff between total and annual costs. 

PSOM can be easily expanded to include all 80+ MDAP systems, with some 

slowing of solution time. Solution times can be reduced by manipulating the model's 

relative termination tolerance, while maintaining the required fidelity of the model 

solution. Thus, PSOM is a useful tool available to acquisition planners and decision 

makers.   Expansion and use of PSOM or a similar optimization model is recommended 

for the upcoming and subsequent QDRs. 
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APPENDIX A: DATA 

AAAV Abrams Bradley C-17 CH-47F Crusader 

YEAR Qty  Cost Qty  Cost Qty  Cost Qty  Cost Qty  Cost Qty Cost 

1985 

1986 

1987 

1988 2 1018.93 

1989 4 1531.84 

1990 4 1865.50 

1991 62 751.33 4 1980.06 

1992 0   0.00 6 2119.84 

1993 0  0.00 6 2349.68 

1994 172 578.58 6 2490.52 

1995 34 313.38 8 2659.00 

1996 100 597.03 8 2128.38 

1997 120 491.66 35 179.16 9 2304.65 

1998 120 609.40 18 116.20 13 3015.49 

1999 120 693.39 73 289.83 15 3343.07 

2000 120 649.22 103 375.99 12 2835.92 

2001 105 539.52 163 436.08 15 3138.41 

2002 90 579.01 181 416.41 9 2278.40 11 166.28 

2003 88 515.32 142 343.63 5 1378.91 17 201.25 

2004 231 595.57 8 2032.88 27 275.20 62 583.00 

2005 38 249.40 235 525.54 29 266.80 114 911.80 

2006 200 1194.50 235 497.49 26 208.92 180 1259.00 

2007 200 1004.40 186 396.09 26 204.09 240 1280.00 

2008 200 950.40 26 200.73 240 1276.00 

2009 200 926.60 26 197.79 240 1176.00 

2010 112 636.70 26 194.95 240 1168.00 

2011 26 193.06 240 1168.00 

2012 26 190.75 74 452.00 

2013 26 148.73 

2014 8  46.95 

2015 

2016 

2017 

2018 

Table Al. Data for AAAV, Abrams, Bradley, C-17, CH-47F, and Crusader 
All costs CY00SM 
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DDG-51 EELV FA-18 E/F JSOW Minuteman NAVSTAR 
YEAR Qty Cost Qty Cost Qty Cost Qty Cost Qty Cost Qty Cost 
1985 1 1582.53 

1986 3 3029.90 

1987 4 3328.72 

1988 5 4053.61 

1989 4 3407.59 

1990 5 4224.52 

1991 4 3544.24 

1992 3 2930.33 

1993 3 2867.45 

1994 2 2170.10 

1995 4 3479.48 

1996 4 3655.36 4 10.35 
1997 3 2823.24 12 2125.34 100 66.03 10 64.71 
1998 3 2769.90 20 2165.90 135 76.17 30 106.12 
1999 3 2846.09 30 2844.57 328 116.49 39 105.67 
2000 2 1977.56 1 67.60 36 2821.15 454 111.18 65 183.76 
2001 2 2038.16 4 351.25 42 2913.62 636 161.40 80 190.29 
2002 2 2009.54 5 430.90 45 2848.91 747 170.09 80 180.95 
2003 1 1276.99 7 512.93 48 2912.05 709 162.00 80 190.52 3 329.80 
2004 7 476.04 48 2923.52 603 128.56 80 181.29 3 286.07 
2005 6 393.24 48 2937.16 504 99.59 80 178.93 3 243.57 
2006 12 1121.46 48 2835.76 893 163.21 80 182.08 3 237.03 
2007 11 769.02 48 2756.44 981 183.97 24 106.91 3 223.55 
2008 13 1031.83 48 2720.23 675 97.42 3 289.75 
2009 13 877.10 48 2666.99 675 96.81 3 303.03 
2010 13 878.07 27 1703.55 675 103.57 3 229.68 
2011 13 877.10 675 114.20 3 208.63 
2012 14 861.47 675 113.35 3 194.73 
2013 12 826.96 535 108.89 3 191.06 
2014 8 522.48 3 181.86 
2015 12 825.99 3 182.47 
2016 11 686.55 3 182.68 
2017 7 460.52 

2018 12 837.81 

Table A2. Data for DDG-51, EELV, FA-18 E/F, JSOW, Minuteman III, and NAVSTAR 
All Costs CY00SM 

44 



Osprey SSN 774 Std Missile 2 T45TS Trident II 

YEAR Qty Cost Qty Cost Qty Cost Qty Cost Qty Cost 

1985 
1986 
1987 

1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 6 497.24 

1997 5 715.38 80 103.39 / 305.56 

1998 7 700.64 1 2758.35 68 112.70 12 522.26 5 256.03 

1999 7 676.46 1 2047.82 71 101.47 24 861.58 5 297.45 

2000 11 955.27 1 1676.50 75 115.36 12 398.56 12 452.45 

2001 16 1256.88 1 1888.31 75 112.11 12 305.68 12 423.10 

2002 19 1460.36 1 1842.41 80 113.29 12 343.11 12 424.17 

2003 28 1646.74 1 1837.09 88 105.02 12 279.09 12 395.13 

2004 28 1579.61 1 2172.61 90 92.76 12 332.91 12 365.32 

2005 28 1487.32 1 2756.18 90 85.37 12 308.71 b 451.99 

2006 30 1480.37 2 3997.55 120 100.00 15 302.20 

2007 30 1428.67 3 4928.79 150 115.95 15 314.79 

2008 30 1475.09 3 4876.27 175 128.80 15 341.70 

2009 30 1449.93 3 4463.93 190 133.97 12 274.86 

2010 32 1613.94 3 4601.20 148 101.18 A 118.17 

2011 32 1518.18 2 3874.82 

2012 36 1695.11 3 3681.13 

2013 30 1336.66 3 2951.61 

2014 9 447.82 

2015 
2016 
2017 
2018 

Table A3. Data for MV-22 Osprey, SSN 774, Std Missile 2, T45TS, and Trident II 
All Cost CY00SM 
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APPENDIX B: FUNCTION PARAMETERS AND FIT 

BASE MODEL 

MEASURE OF FIT AND PARAMETERS 

System Lot R adj Ti ß 
AAAV 0.57 7.81861 -0.06793 

Abrams Upgrade 0.01 14.06907 -0.13987 

Bradley Upgrade 0.88 15.74449 -0.28477 

C-17 0.58 574.31966 -0.17606 

CI-M7F 0.95 20.84342 -0.20234 

Crusader 0.91 16.86318 -0.17437 

DDG51 0.67 1121.24115 -0.04546 

EELV 0.42 93.88424 -0.06959 

FA-18 E/F 0.65 222.60646 -0.22781 

JSOW 0.89 1.68594 -0.26177 

Minuteman III 0.87 8.31990 -0.22178 

NAVSTAR 0.55 119.00257 -0.15928 

MV-22 Osprey 0.94 168.38496 -0.22447 

SSN 774 0.75 2686.77836 -0.19130 

Std Missile 2 0.79 34.58983 -0.54884 

T-45TS 0.94 58.19118 -0.18214 

Trident II -0.35 77.10653 -0.15422 

MEDIAN 

MEAN 

0.75 

0.65 

Table Bl. Base Model R adj and Fitted Parameters 
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MULTIPLICATIVE RATE MODEL 

MEASURE OF FIT AND PARAMETERS 

System Lot R2
adj Ti ß 1 

AAAV 0.70 10.148 -0.04204 -0.08169 

Abrams Upgrade 0.42 163.449 -0.07840 -0.62766 

Bradley Upgrade 0.91 21.790 -0.13633 -0.24966 

C-17 0.83 771.727 -0.06125 -0.35681 

CH-47F 0.95 19.672 -0.18633 0.00000 

Crusader 0.90 20.757 -0.15243 -0.06508 

DDG51 0.97 1510.120 -0.03590 -0.31790 

EELV 0.88 95.516 -0.07395 0.00000 

FA-18E/F 0.90 541.808 -0.12197 -0.39134 

JSOW 0.88 2.550 -0.23668 -0.09960 

Minuteman III 0.94 17.501 -0.01105 -0.44964 

NAVSTAR 0.53 114.538 -0.14171 0.00000 

MV-22 Osprey 0.95 205.450 -0.15947 -0.16123 

SSN 774 0.71 1967.715 -0.02312 -0.34216 

Std Missile 2 0.79 39.154 -0.47226 -0.13194 

T-45TS 0.93 60.082 -0.20338 0.01334 

Trident II 0.75 151.321 -0.17933 -0.31996 

MEDIAN 

MEAN 

0.88 

0.81 

Table B2. Multiplicative Rate Model R2^ and Fitted Parameters 
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IDA RATE-PENALTY MODEL 

MEASURE OF FIT AND PARAMETERS 

System Lot R adj T, ß 8 R* 

AAAV 0.51 6.760 -0.04525 0.00553 200.000 

Abrams Upgrade 0.03 17.338 -0.19414 0.04208 120.000 

Bradley Upgrade 0.94 4.677 -0.11321 0.02098 190.548 

C-17 0.87 322.087 -0.08388 19.90869 15:000 

CH-47F 0.96 20.961 -0.20174 0.00100 26.000 

Crusader 0.88 17.939 -0.18500 0.00947 240.000 

DDG51 0.94 1001.187 -0.06159 161.49438 4.923 

EELV 0.89 95.430 -0.07374 0.00100 13.000 

FA-18E/F 0.56 261.427 -0.26459 0.00100 48.000 

JSOW 0.82 0.857 -0.18994 0.00041 731.456 

Minuteman III 0.85 2.251 -0.00036 0.05906 80.000 

NAVSTAR 0.55 123.303 -0.16641 0.00000 3.000 

MV-22 Osprey 0.95 159.058 -0.21551 0.46394 30.000 

SSN 774 0.70 1484.113 0.00000 418.25901 3.000 

Std Missile 2 0.80 17.657 -0.46028 0.00600 150.037 

T-45TS 0.96 61.104 -0.19889 0.23579 12.000 

Trident II 0.92 105.786 -0.46859 16.36435 8.933 

MEDIAN 

MEAN 

0.87 

0.77 

Table B3. IDA Rate-Penalty Model R adj and Fitted Parameters 
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LURP MODEL 

MEASURE OF FIT AND PARAMETERS 

System Lot R adj Ti ß 5 R* 

AAAV 0.60 6.753 -0.04671 0.00489 200.000 

Abrams Upgrade 0.18 16.985 -0.19390 0.02440 120.000 

Bradley Upgrade 0.88 15.221 -0.30396 0.00765 169.274 

C-17 0.84 341.854 -0.12343 16.78857 13.754 

CH-47F 0.96 20.331 -0.19360 0.01384 26.000 

Crusader 0.97 10.853 -0.11166 0.01396 240.000 

DDG51 0.92 990.690 -0.08644 130.04896 4.678 

EELV 0.89 95.426 -0.07373 0.00100 13.000 

FA-18E/F 0.56 261.403 -0.26458 0.00100 48.000 

JSOW 0.82 1.427 -0.25164 0.00014 675.000 

Minuteman III 0.75 10.488 -0.27319 0.00100 80.000 

NAVSTAR 0.55 123.303 -0.16641 0.00000 3.000 

MV-22 Osprey 0.97 154.603 -0.21421 0.47396 30.000 

SSN 774 0.75 1451.865 0.00000 306.01032 3.000 

Std Missile 2 0.74 28.683 -0.53104 0.00178 141.829 

T-45TS 0.95 61.960 -0.20159 0.11271 12.000 

Trident II 0.93 94.346 -0.64826 9.68116 9.243 

MEDIAN 

MEAN 

0.84 

0.78 

Table B4. LURP Model R2
adj and Fitted Parameters 
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RATE CHANGE MODEL 

MEASURE OF FIT AND PARAMETERS 

System Lot R adj Ti ß 5 

AAAV 0.76 8.315 -0.08823 0.00330 

Abrams Upgrade -0.06 21.832 -0.21975 0.00000 

Bradley Upgrade 0.79 20.851 -0.33651 0.00100 

C-17 0.51 579.953 -0.17122 0.00100 

CH-47F 0.96 20.717 -0.19727 0.00100 

Crusader 0.86 21.992 -0.21566 0.00100 

DDG51 0.61 1259.813 -0.08714 0.00000 

EELV 0.94 91.330 -0.08007 2.51267 

FA-18 E/F 0.52 261.482 -0.26463 0.00100 

JSOW 0.89 1.692 -0.25741 -0.00008 

Minuteman III 0.33 9.261 -0.25777 0.03262 

NAVSTAR 0.55 123.303 -0.16641 0.00000 

MV-22 Osprey 0.93 176.229 -0.23353 0.05506 

SSN 774 0.69 2529.798 -0.16309 91.60310 

Std Missile 2 0.73 38.029 -0.56567 0.00100 

T-45TS 0.97 60.445 -0.20098 0.31447 

Trident II 0.58 107.595 -0.28407 0.00100 

MEDIAN                                      0.73 

MEAN                                       0.68 

Table B5. Rate-Change Model R2
adj and Fitted Parameters 
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BASE + OVERHEAD MODEL 

MEASURE OF FIT AND PARAMETERS 

System Lot R adj Ti ß Q 

AAAV 0.95 9.204 -0.10554 37.372 

Abrams Upgrade 0.60 3.351 0.00000 219.906 

Bradley Upgrade 0.93 7.003 -0.18030 53.401 

C-17 0.84 315.273 -0.14253 831.878 

CH-47F 0.96 21.320 -0.20451 1.000 

Crusader 0.90 15.501 -0.17451 90.972 

DDG51 0.97 648.006 -0.01373 980.791 

EELV 0.90 104.930 -0.09306 1.000 

FA-18E/F 0.89 111.095 -0.19579 1106.798 

JSOW 0.90 1.498 -0.25403 4.665 

Minuteman III 0.96 3.096 -0.08508 34.847 

NAVSTAR 0.59 122.981 -0.16704 1.000 

MV-22 Osprey 0.95 125.966 -0.19754 197.694 

SSN 774 0.77 2419.285 -0.20507 414.191 

Std Missile 2 0.81 27.305 -0.53731 16.248 

T-45TS 0.95 66.235 -0.21480 1.000 

Trident II 0.72 82.506 -0.29418 92.509 

MEDIAN 

MEAN 

0.90 

0.85 

Table B6. Base + Overhead Model R ^j and Fitted Parameters 
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APPENDIX C: GAMS IMPLEMENTATION 

STITLE **PROCUREMENT SCHEDULE OPTIMIZATION MODEL (PSOM)** 

* DEFAULTS  
$OFFUPPER OFFSYMLIST OFFSYMXREF INLINECOM{ } 

OPTIONS RESLIM = 100000 
ITERLIM = 100000 
LIMCOL = 0 
LIMROW = 0 
DECIMALS = 2 
SOLPRINT = OFF 
MIP = CPLEX 
SYSOUT = OFF 
OPTCR = .0005 

$ONTEXT 
Original:   9/28/00 
Author:     Donald E. Humpert 

Description: Base + Overhead Model 
Time period one = current year = 2000; 
Time period 19 = 2018; 

SOFFTEXT 
* INDICES- 

SET 
i system 

/AAAV 
ABRAMS 
BRADLEY 
C17 
CH47F 
CRUSADER 
DDG51 
EELV 
FA18EF 
JSOW 
MMIII 
NAVSTAR 
OSPREY 
SSN774 
STDMSL2 
T45TS 
TRIDENT2/ 

t time periods / 1*19 / 

p LRIP time periods / 1*3 / 

c cost level /1*4/ 

ALIAS (t, tp); 

* DATA  

PARAMETERS 
M(i)       LRIP time'periods for system i 

/AAAV     1 
CRUSADER 1/ 

QLRIP(i,p)  number of units i in LRIP period p 
/AAAV     . 1     38 
CRUSADER .1     62/ 
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CLRIP(i,p)  procurement cost of system i in LRIP period p 
/AAAV     .1     2.494 
CROSADER .1     5.830/ 

INV(i) 

MINR(i) 

starting inventory of system i in period 1 
/AAAV 0 
ABRAMS 848 
BRADLEY 229 
C17 85 
CH47F 0 
CRUSADER 0 
DDG51 48 
EELV 1 
FA18EF 98 
JSOW 1017 
MMIII 148 
NAVSTAR 0 
OSPREY 30 
SSN774 3 
STDMSL2 294 
T45TS 153 
TRIDENT2 35/ 

:nin sustaining production rate for system i during FRP 
/AAAV 20 
ABRAMS 20 
BRADLEY 20 
C17 1 
CH47F 8 
CRUSADER 20 
DDG51 1 
EELV 4 
FA18EF 12 
JSOW 100 
MMIII 10 
NAVSTAR 3 
OSPREY 9 
SSN774 1 
STDMSL2 60 
T45TS 1 
TRIDENT2 5/ 

MAXR(i) maximum p roduc 
/AAAV 200 
ABRAMS 120 
BRADLEY 235 
C17 15 
CH47F 29 
CRUSADER 240 
DDG51 3 
EELV 14 
FA18EF 48 
JSOW 900 
MMIII 80 
NAVSTAR 3 
OSPREY 36 
SSN774 3 
STDMSL2 190 
T45TS 15 
TRIDENT2 12/ 
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(i) earliest perio 
/AAAV 3 
ABRAMS 2 
BRADLEY 2 
C17 2 
CH47F 2 
CRUSADER 3 
DDG51 2 
EELV 2 
FA18EF 2 
JSOW 2 
MMIII 2 
NAVSTAR 2 
OSPREY 2 
SSN774 2 
STDMSL2 2 
T45TS 2 
TRIDENT2 2/ 

in which FRP may begin for system i 

LATE(i) latest period in which FRP may begin for system i 

D(i,t) 

/AAAV 16 
ABRAMS 2 
BRADLEY 2 
C17 2 
CH47F 14 
CRUSADER 18 
DDG51 2 
EELV 2 
FA18EF 2 
JSOW 2 
MMIII 2 
NAVSTAR 17 
OSPREY 2 
SSN774 2 
STDMSL2 2 
T45TS 2 
TRIDENT2 2/ 

required quantities of system i by period t 
/AAAV .10 950 
ABRAMS .7 1131 
BRADLEY .13 1602 
C17 .5 134 
CH47F .14 300 
CRUSADER .18 1630 
DDG51 .6 58 
EELV .19 181 
FA18EF .11 548 
JSOW .14 10000 
MMIII .8 652 
NAVSTAR .17 42 
OSPREY .14 408 
SSN774 .15 30 
STDMSL2 .11 1500 
T45TS .5 169 
TRIDENT2 .6 88/ 
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FIXED(i) fixed costs for sys tern i incurred i f in 
/AAAV 37.372 
ABRAMS 219.906 
BRADLEY 53.401 
C17 831.878 
CH47F 1.000 
CRUSADER 90.972 
DDG51 980.791 
EELV 1.000 
FA18EF 1106.798 
JSOW 4.665 
MMIII 34.847 
NAVSTAR 1.000 
OSPREY 197.694 
SSN774 414.191 
STDMSL2 16.248 
T45TS 1.000 
TRIDENT2 92.509/; 

IBLE PRICE(i,c) price of system i at cost level c 
1 2 3 4 

AAAV 6.2009 5.2218 5 8138 4 .5611 
ABRAMS 3.3511 3.3511 3 3511 3 3511 
BRADLEY 2.4411 2.1905 2 0238 1 9015 
C17 165.7682 162.9792 160 3270 157 8955 
CH47F 12.7181 9.1060 7 7357 6 9360 
CRUSADER 7.5?63 5.5858 4 8550 4 4248 
DDG51 614.1985 613.7836 613 3873 613 0102 
EELV 83.9663 73.7427 68 9474 65 8737 
FA18EF 42.3139 38.2048 35 3571 33 2098 
JSOW 0.4063 0.3388 0 2982 0 2701 
MMIII 1.9753 1.9019 1 8466 1 8027 
NAVSTAR 102.9337 82.8620 73 8571 68 0108 
OSPREY 56.4472 47.9924 43 0965 39 7409 
SSN774 1687.5765 1470.2191 1339 4992 1241 8150 
STDMSL2 1.1019 .8517 0 6912 0 5802 
T45TS 22.4033 22.2814 22 1632 22 0484 
TRIDENT2 27.7030 25.6831 24 0186 22 6609 

TABLE LIMIT(i,c) min number of system i that must be procured at 
price c before any can be procured at price next c 

1 2 3 4 
AAAV 117 215 280 338 
ABRAMS 68 70 72 73 
BRADLEY 250 317 376 430 
C17 11 12 13 13 
CH47F 34 66 89 111 
CRUSADER 184 362 486 598 
DDG51 2 3 2 3 
EELV 24 41 52 63 
FA18EF 85 104 122 139 
JSOW 1510 2030 2500 2943 
MMIII 101 119 135 149 
NAVSTAR 6 9 12 15 
OSPREY 62 85 106 125 
SSN774 5 6 7 9 
STDMSL2 212 272 331 391 
T45TS 4 4 4 4 
TRIDENT2 11 13 14 15; 

SCALAR  BGT annual budget /25000/; 
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* VARIABLES- 
VARIABLE 

TOTAL total procurement costs for all systems over all periods 

POSITIVE VARIABLES 
q(i,t,c)   units of system i procured in period t at cost level c 
cumq(i,t)  cumulative units of system i procured by period t 
cost(i,t)  cost of units of system i procured in period t 

BINARY VARIABLES 
start(i,t)  1 if system i begins FRP in period t else 0 
frp(i,t)   1 if system i is in FRP in period t else 0 
y(i,t,c)   1 if system i available at price level c in period t else 0 

—EQUATIONS  
EQUATIONS 
OBJ 
PAYOUT(i,t) 
BUDGET(t) 
CUMQUANT(i,t) 
DEMAND(i,t) 
MINPROD(i,t) 
MAXPROD(i,t) 
EARLIEST(i) 
LATEST(i) 
NOBREAKS(i) 
FRPSTART(i,t) 
STEPlLHS(i,t,c) 
STEPlRHS(i,t,c) 
STEP2LHS(i,t,c) 
STEP2RHS(i,t,c) 
STEP3LHS(i,t,C) 
STEP3RHS(i,t,c) 
STEP4RHS(i,t,c) 

Objective Function 

* OBJECTIVE FUNCTION 

OBJ. . 

* CONSTRAINTS  

PAYOUT(i,t).. 

TOTAL =e= sum(i, sum(t, cost(i,t))), 

cost(i,t) =e= sum(c, q(i,t,c)*PRICE(i,c)) + frp(i,t)*FIXED(i) 
+ sum(p$(ord(p)<=M(i)), CLRIP(i,p)»start(i,t+(l+M(i)-ord(p)))); 

BUDGET(t)..      BGT =g=  sum(i, cost(i,t))i 

CUMQUANT(i,t) 

DEMAND(i,t) 

cumq(i,t) =e= INV(i) 
+ sum(tp$(ord(tp)<=ord(t)),  sum(c, q(i,tp,c))) 
+ sum(tp$(ord(tp)<=ord(t)),  sum(p$(ord(p)<=M(i)), 

QLRIP(i,p)*start(i,tp+(1+M(i)-ord(p))))); 

cumq(i,t) =g= D(i,t); 

MINPROD(i,t)..   sum(c, q(i,t,c)) =g= frp(i,t)*MINR(i); 

MAXPROD(i,t)..   sum(c, q(i,t,c)) =1= frp(i,t)*MAXR(i), 

EARLIEST(i).. sum(t, ord(t)*start(i,t)) =g= EARLY(i); 
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LATEST(i)..      sum(t, ord(t)»start(i,t)) =l=LATE(i); 

NOBREAKS(i)..    sum(t, start(i,t)) =e= 1; 

FRPSTART(i,t) . .  start (i,t) »g= (frp(i,t) - frp (i, t-1) ) ; 

STEPlLHS(i,t,c) .. LIMIT(i,"l")*y(i,t,"l") -1= sum(tp$(ord(tp)<=ord(t)) , q(i,tp,"1")); 

STEP2LHS(i,t,c) .. LIMIT(i,"2")*y(i,t,"2") -1« sum(tp$(ord(tp)<=ord(t)) , q(i,tp,"2")); 

STEP3LHS(i,t,c) . . LIMIT(i,"3")*y(i,t,H3") -1= sum (tpS (ord (tp) <-ord (t) ), q(i, tp, "3") ) ; 

STEPlRHS(i,t,c).. sum(tp$(ord(tp)<-ord(t)), q(i,tp,"l")) =1- LIMIT(i,"1"); 

STEP2RHS(i,t,c).. sum(tp$(ord(tp)<=ord(t)), q(i,tp,"2")) =1= LIMIT(i, "2")*y(i, t, "1") ; 

STEP3RHS(i,t,c) . . sum(tp$(ord(tp)<=ord(t)), q (i, tp, "3") ) -1«= LIMIT (i, "3") *y (i, t, "2") ; 

STEP4RHS(i,t,c) . . sum(tp$(ord(tp)<-ord(t)), q(i,tp,"4")) =1= LIMIT(i, "4")*y(i, t, "3") ; 

MODEL PSOM/ ALL /; 
file reportl;put reportl;reportl.pc=5; 
put report1; 
put'ANNUAL BUDGET','TOTAL COST'/; 
put 'SYSTEM QUANTITIES PER PERIOD, PER BUDGET'//; 
for(BGT - 22000 downto 12750 by 250, 

Solve PSOM using MIP MINIMIZING TOTAL; 
DISPLAY BUDGET.1; 
DISPLAY q.l; 
put report1; 
put BGT; 
put TOTAL.1; 
put/; 

); 
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